Distribution symmetry of toral eigenfunctions

نویسندگان

چکیده

In this paper we study a number of conjectures on the behavior value distribution eigenfunctions. On two dimensional torus, observe that symmetry conjecture holds in strongest possible sense. other hand, provide counterexample for higher tori, which relies computer-assisted argument. Moreover prove theorem certain class trigonometric polynomials might be independent interest.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restriction of Toral Eigenfunctions to Hypersurfaces

Let T = R/Z be the d-dimensional flat torus. We establish for d = 2, 3 uniform upper and lower bounds on the restrictions of the eigenfunctions of the Laplacian to smooth hyper-surfaces with non-vanishing curvature.

متن کامل

On the nodal sets of toral eigenfunctions

We study the nodal sets of eigenfunctions of the Laplacian on the standard d-dimensional flat torus. The question we address is: Can a fixed hypersurface lie on the nodal sets of eigenfunctions with arbitrarily large eigenvalue? In dimension two, we show that this happens only for segments of closed geodesics. In higher dimensions, certain cylindrical sets do lie on nodal sets corresponding to ...

متن کامل

Restriction of Toral Eigenfunctions to Hypersurfaces and Nodal Sets

We give uniform upper and lower bounds for the L norm of the restriction of eigenfunctions of the Laplacian on the three-dimensional standard flat torus to surfaces with non-vanishing curvature. We also present several related results concerning the nodal sets of eigenfunctions.

متن کامل

Distribution Laws for Integrable Eigenfunctions

We determine the asymptotics of the joint eigenfunctions of the torus action on a toric Kähler variety. Such varieties are models of completely integrable systems in complex geometry. We first determine the pointwise asymptotics of the eigenfunctions, which show that they behave like Gaussians centered at the corresponding classical torus. We then show that there is a universal Gaussian scaling...

متن کامل

Amplitude distribution of eigenfunctions in mixed systems

We study the amplitude distribution of irregular eigenfunctions in systems with mixed classical phase space. For an appropriately restricted random wave model a theoretical prediction for the amplitude distribution is derived and good agreement with numerical computations for the family of limaçon billiards is found. The natural extension of our result to more general systems, e.g. with a poten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista Matematica Iberoamericana

سال: 2021

ISSN: ['2235-0616', '0213-2230']

DOI: https://doi.org/10.4171/rmi/1324